Микрофон

Версия от 07:50, 20 сентября 2015; 109.187.25.207 (обсуждение) (→‎Катушечный микрофон)
(разн.) ← Предыдущая версия | Текущая версия (разн.) | Следующая версия → (разн.)

Микрофо́н (от греч. μικρός — маленький, φωνη — голос) — электроакустический прибор, преобразовывающий звуковые колебания в колебания электрического тока. Служит первичным звеном в цепочке звукозаписывающего тракта или звукоусиления. Микрофоны используются во многих устройствах, таких как телефоны и магнитофоны, в звуко- и видеозаписи, на радио и телевидении.

Устройство микрофона[править]

Принцип работы микрофона заключается в том, что давление звуковых колебаний воздуха, воды или твёрдого вещества действует на тонкую мембрану микрофона. В свою очередь, колебания мембраны возбуждают электрические колебания; в зависимости от типа микрофона для этого используются явление электромагнитной индукции, изменение ёмкости конденсаторов или пьезоэлектрический эффект.

Свойства акустико-механической системы сильно зависят от того, воздействует ли звуковое давление на одну сторону диафрагмы (микрофон давления) или на обе стороны, а во втором случае от того, симметрично ли это воздействие (микрофон градиента давления) или на одну из сторон диафрагмы действуют колебания, непосредственно возбуждающие её, а на вторую — прошедшие через какое-либо механическое или акустическое сопротивление или систему задержки времени (асимметричный микрофон градиента давления).

Большое влияние на характеристики микрофона оказывает его механоэлектрическая часть.

Классификация микрофонов[править]

Динамический микрофон[править]

Устройство динамического микрофона
Устройство динамического микрофона

Динамический микрофон - наиболее распространённый тип конструкции микрофона. Он представляет собой мембрану, соединённую с лёгким токопроводом, который помещен в сильное магнитное поле, создаваемое постоянным магнитом. Колебания давления воздуха (звук) воздействуют на мембрану и приводят в движение токопровод. Когда токопровод пересекает силовые линии магнитного поля, в нём наводится ЭДС индукции. ЭДС индукции пропорциональна как амплитуде колебаний мембраны, так и частоте колебаний.

Катушечный микрофон[править]

В электродинамическом микрофоне катушечного типа диафрагма соединена с катушкой, находящейся в кольцевом зазоре магнитной системы. При колебаниях диафрагмы под действием звуковой волны витки катушки пересекают магнитные силовые линии, и в катушке наводится переменная ЭДС. Такой микрофон надёжен в эксплуатации.

Ленточный микрофон[править]

В электродинамическом микрофоне ленточного типа вместо катушки в магнитном поле располагается гофрированная ленточка из алюминиевой фольги. Такой микрофон применяется главным образом в студиях звукозаписи.

Конденсаторный микрофон[править]

Конденсаторный микрофон основан на конденсаторе, одна из обкладок которого выполнена из эластичного материала (обычно — полимерная плёнка с нанесённой металлизацией); при звуковых колебаниях вибрации эластичной обкладки изменяют ёмкость конденсатора. Если конденсатор заряжен, то изменение ёмкости конденсатора приводит к возникновению токов заряда, которые и являются полезным сигналом, поступающим с микрофона на усилитель. Для работы такого микрофона между обкладками должно быть приложено поляризующее напряжение, 60-80 вольт в более старых микрофонах, а в моделях после 1960—1970-х годов — 48 вольт. Такое напряжение питания считается стандартом, именно с таким фантомным питанием выпускаются предусилители и звуковые карты. Конденсаторный микрофон имеет очень высокое выходное сопротивление. В связи с этим, в непосредственной близости к микрофону (внутри его корпуса) располагают предусилитель с высоким (порядка 1 ГОм) входным сопротивлением, выполненный на электронной лампе или полевом транзисторе.

Устройство конденсаторного микрофона
Устройство конденсаторного микрофона

Конденсаторные микрофоны обладают весьма равномерной амплитудно-частотной характеристикой и обеспечивают высококачественный захват звука, в связи с чем широко используются в студиях звукозаписи, на радио и телевидении. Недостатками их являются высокая стоимость, необходимость во внешнем питании и высокая чувствительность к ударам и климатическим воздействиям — влажности воздуха и перепадам температуры, что не позволяет использовать их в полевых условиях.

Электретный микрофон[править]

По принципу действия электретный микрофон схож с микрофоном конденсаторного типа, однако в качестве неподвижной обкладки конденсатора и источника постоянного напряжения используется пластина из электрета. Электретные материалы являются диэлектриками и способны длительное время сохранять поляризованное состояние, создавая в окружающем пространстве квазипостоянное электрическое поле.

Угольный микрофон[править]

Угольный микрофон - один из первых типов микрофонов. Содержит угольный порошок, размещённый между двумя металлическими пластинами и заключённый в герметичную капсулу. Стенки капсулы или одна из металлических пластин соединяется с мембраной. При изменении давления на угольный порошок изменяется площадь контакта между отдельными зёрнышками угля, в результате чего изменяется сопротивление между металлическими пластинами. Если пропускать между пластинами постоянный ток, напряжение между пластинами будет зависеть от давления на мембрану.

Пьезомикрофон[править]

В основе пьезомикрофона используется пьезоэлектрический эффект. При деформации некоторых кристаллов (например, кристаллов сегнетовой соли) на их поверхности возникают электрические заряды, величина которых пропорциональна деформирующей силе. Пластинки из искусственно выращенных кристаллов служат основным рабочим элементом пьезомикрофонов.

По своим электроакустическим и эксплуатационным свойствам пьезомикрофоны не могут обеспечить требований, предъявляемых к профессиональным студийным и трансляционным микрофонам. К недостаткам пьезомикрофонов следует отнести высокое внутреннее сопротивление, имеющее емкостный характер, значительную неравномерность частотной характеристики, недостаточную эксплуатационную надежность (хрупкость, гигроскопичность) и зависимость параметров от температуры. Достоинствами пьезомикрофонов являются простота устройства, малый вес и габариты, а также небольшая стоимость.

Характеристики микрофонов[править]

Чувствительность[править]

Чувствительность микрофона определяется отношением напряжения на выходе микрофона к звуковому давлению Р0, как правило, в свободном звуковом поле, то есть при отсутствии влияния отражающих поверхностей. При распространении синусоидальной звуковой волны в направлении рабочей оси микрофона, это направление называется осевой чувствительностью:

M0 = U/P0 (мВ/Па)

Рабочей осью микрофона является направление его преимущественного использования и обычно совпадает с осью симметрии микрофона. Если конструкция микрофона не имеет оси симметрии, то направление рабочей оси указывается в технических условиях. Чувствительность современных микрофонов составляет от 1–2 (динамические микрофоны) до 10–15 (конденсаторные микрофоны) мВ/Па. Чем больше это значение, тем выше чувствительность микрофона. Стоит заметить, что качество микрофона не определяется исключительно его чувствительностью.

Амплитудно-частотная характеристика[править]

Амплитудно-частотная характеристика (АЧХ) — зависимость амплитуды выходного сигнала от частоты. А также функция выражающая (описывающая) эту зависимость. А также — график этой функции. В различных областях применяются микрофоны с различными АЧХ. Для записи фортепиано или акустической гитары используются микрофоны с равномерной АЧХ на всём частотном диапазоне. У дикторских микрофонов наблюдается пик на графике АЧХ в области речевых частот.

Характеристика направленности[править]

Направленность микрофонов. Представление в полярных координатах
приемники давления
Ненаправленный
приемники градиента давления
Двунаправленный
«Восьмёрка»
комбинированные
Кардиоида
Гиперкардиоида

Характеристикой направленности называют зависимость чувствительности микрофона от направления падения звуковой волны по отношению к оси микрофона. Она определяется отношением чувствительности Мα при падении звуковой волны под углом α относительно акустической оси микрофона к его осевой чувствительности:

φ = Mα/M0

Направленность микрофона означает его возможное расположение относительно источников звука. Если чувствительность не зависит от угла падения звуковой волны, то есть φ = 1, то микрофон называют ненаправленным, и источники звука могут располагаться вокруг него. А если чувствительность зависит от угла, то источники звука должны располагаться в пространственном угле, в пределах которого чувствительность микрофона мало отличается от осевой чувствительности.

Ненаправленные микрофоны[править]

В ненаправленных микрофонах (приёмниках давления) сила, действующая на диафрагму, определяется звуковым давлением у поверхности диафрагмы. Звуковое поле может действовать только на одну сторону диафрагмы. Вторая сторона конструктивно защищена. Если размеры микрофона малы по сравнению с длиной звуковой волны, то микрофон не изменяет звукового поля. Если размеры соизмеримы с длиной волны, тогда за счёт дифракции звуковых волн микрофон приобретает направленность. На частотах от 5000 Гц и ниже такие микрофоны являются ненаправленными. Преимуществом ненаправленных микрофонов является простота конструкции, расчёта капсюля и стабильности характеристик с течением времени. Ненаправленные капсюли часто используют в составе измерительных микрофонов, в быту могут быть использованы для записи разговора людей, сидящих за круглым столом.

Двунаправленные микрофоны[править]

В двунаправленных микрофонах (приёмниках градиента давления) сила, действующая на движущуюся систему микрофона, определяется разностью звуковых давлений на двух сторонах диафрагмы. То есть, звуковое поле действует на две стороны диафрагмы. Характеристика направленности имеет вид восьмёрки.

Двусторонние микрофоны удобны, например, для записи разговора двух собеседников, сидящих друг напротив друга.

Микрофоны односторонней направленности[править]

Односторонняя направленность достигается в микрофонах комбинированного типа. Их диаграммы направленности близки по форме к кардиоиде, поэтому нередко их называют кардиоидными. Модификации микрофонов, имеющих ещё меньшую направленность, чем кардиоидные, называют суперкардиоидными и гиперкардиоидными, однако эти разновидности, в отличие от кардиоидного микрофона, также чувствительны к сигналам с противоположной стороны.

Эти микрофоны имеют определённые преимущества в эксплуатации: источник звука располагается с одной стороны микрофона в пределах достаточно широкого пространственного угла, а звуки, распространяющиеся за его пределами, микрофон не воспринимает.

Литература[править]

  • Сапожков М.А. Электроакустика. Учебник для вузов. — М.: «Связь», 1978. — 272 с.
  • Сидоров И.Н., Димитров А.А. Микрофоны и телефоны. — "Радио и связь", 1993. — 152 с.